什么是“三线合一”?它又应如何用?

发布网友 发布时间:2022-04-22 01:40

我来回答

4个回答

热心网友 时间:2022-07-12 07:04

三线合一中的三线是在等腰的三角形的,分别是一条是与顶角有关的,顶上的角的平分线,另两条是与底边(不是腰,但等边三角形正三角形特殊)有关的的,一条是底边的高,另一条是底边的垂直平分线。这是等腰三角形的一特殊的性质,应用可以处理许多平面几何问题。

等腰三角形的三线合一是底边的中线和高、顶角的角平分线三线合一。如果已经知道某条线段是上述三线之一,即可知道这条线段也是另外两类线。

扩展资料:

注意事项:

1、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一),知2推2。

2、角的平分线上的点到角两边的距离相等(点到线的距离,指垂线段的长度),反之角的内部到角的两边距离相等的点在角的平分线上。

3、线段垂直平分线上的点到线段两端点的距离相等(点到点的距离,指线段的长度),反之到线段两端点距离相等的点,在这条线段的垂直平分线上。

参考资料来源:百度百科-三线合一

参考资料来源:百度百科-等腰三角形

热心网友 时间:2022-07-12 07:05

运用等腰三角形“三线合一”的性质证明角相等、线段相等或垂直关系,可减少证全等的次数,简化解题过程。

1、直接运用

例题1、如图所示,房屋顶角 ∠BAC = 100°,过屋顶 A 的立柱 AD⊥BC,屋檐 AB = AC 。

求顶架上的 ∠B,∠C ,∠BAD 和 ∠CAD 的度数 。

解:

∵ 在 △ABC 中 AB = AC , ∠BAC = 100° , AD⊥BC

∴ ∠B = ∠C = 1/2 (180° - ∠BAC)= 40°

∴ ∠BAD = ∠CAD = 1/2 ∠BAC = 50°

2、如图所示,在 △ABC 中, AB = AC , AD = DB ,DE⊥AB 于点 E ,若 BC = 10 ,且 △BDC 的周长为 24 。

求 AE 的长 。

解:

∵ △BDC 的周长为 24 ,BC = 10

∴ BD + CD = 14

∵ AD = BD

∴ AC = AD + CD = BD + CD = 14

又 ∵ AB = AC

∴ AB = 14

又 ∵ AD = DB , DE⊥AB

∴ AE = EB = 1/2 AB = 7

3、如图所示,在 △ABC 中 ,AB = AC , AD⊥BC 于点 D ,BE⊥AC 于点 E ,AD 和 BE 相交于点 H ,且 BE = AE 。

求证:AH = 2BD 。

证明:

∵ AD⊥BC , BE⊥AC

∴ ∠AEH = ∠BEC = ∠ADB = 90°

∴ ∠EBC + ∠BHD = 90° , ∠EAH + ∠AHE = 90°

∵ ∠BHD = ∠AHE

∴ ∠EBC = ∠EAH

∵ BE = AE

∴ △AHE ≌ △BCE

∴ AH = BC

又 ∵ AB = AC , AD⊥BC

∴ BC = 2BD

∴ AH = 2BD

4、如图所示,在等边 △ABC 中 ,D 是 AC 的中点 ,E 是 BC 的延长线上的一点,且 CE = CD ,DM⊥BC 于点 M 。

求证: M 是 BE 的中点 。

证明:连接 BD

∵ 在等边 △ABC 中 , D 是 AC 的中点

∴ ∠DBC = 1/2 ∠ABC = 1/2 × 60° = 30° ,∠ACB = 60°

∵ CE = CD ∴ ∠CDE = ∠E

∵ ∠ACB = ∠CDE + ∠E

∴ ∠E = 1/2 ∠ACB = 30°

∴ ∠DBC = ∠E = 30°

∴ BD = DE ∴ △BDE 为等腰三角形

又 ∵ DM⊥BC

∴ M 是 BE 的中点

5、如图所示,在 △ABC 中 , AC = 2AB ,AD 平分 ∠BAC ,E 是 AD 上一点 ,且 EA = EC 。

求证:EB⊥AB 。

证明:过点 E 作 EF⊥AC 于点 F

∵ EA = EC ∴ AF = 1/2 AC

又 ∵ AC = 2AB ∴ AF = AB

∵ AD 平分 ∠BAC ∴ ∠FAE = ∠BAE

又 ∵ AE = AE ∴ △AEF ≌ △AEB (SAS)

∴ ∠ABE = ∠AFE = 90° , 即 BE⊥AB 。

热心网友 时间:2022-07-12 07:05

  等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。叫等腰三角形三线合一。
  前提:在三角形中,只要有两条线重合,那这个三角形一定是等腰三角形。

热心网友 时间:2022-07-12 07:06

重合是怎样重合

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com