已知如图:正方形ABCD中,E为CD上一点,延长BC至点F,使CF=CE,BE交DF于点G,若GF=2,DG=3,则BG=______

发布网友 发布时间:2022-04-24 20:19

我来回答

1个回答

热心网友 时间:2023-10-09 16:42

∵四边形ABCD是正方形,
∴CD=BC,CD⊥BC,
∴∠BCD=∠DCF=90°
∴在△DCF与△BCE中,

CD=CB
∠DCF=∠BCE
CF=CE

∴△DCF≌△BCE(SAS),
∴∠FDC=∠EBC,DF=BE=DG+GF=3+2=5,
∵∠FDC+∠F=90°,
∴∠EBC+∠F=90°,
∴∠BGF=90°,
∴∠DGE=∠BGF=90°,
∴△DGE∽△BGF,
DG
BG
=
GE
GF

∵GE=BG-BE=BG-5,
3
BG
=
BG-5
2

解得:BG=6.
故答案为:6.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com