三角函数的符号

发布网友 发布时间:2022-04-22 07:11

我来回答

2个回答

热心网友 时间:2022-06-17 07:08

三角函数

三角函数是一个初等函数,它涉及到三角形的长度的三角形的长度的角度。他们也被称为圆函数, 见下面图片。

三角函数希腊符号α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω

三角函数符号:
sine 正弦 简写:sin 
cosine余弦 简写:cos
tangent正切  简写:tan
cotangent余切 简写:ctg或cot
secant正割 简写:sec
cosecant余割 简写:cosec
versine (versed sine)正矢 简写:versin
vercosine  (versed cosine)余矢简写:vercos
haversin - haversed sine半正矢
exsecant 外正割 简写:exsec
excosecant外余割 简写:excsc

反三角函数符号:

反正弦:arcsin 
反余弦:arccos
反正切:arctan
反余切:arcctg或arccot

一些层面的理论。

正弦角Sine是 斜边与对边的比值。

余弦角COS是邻边的与斜边比值。

所有其他功能都通过正弦和余弦表示如下:

正切: (对边与邻边的比值)

余切:  (直角三角形任意一锐角的邻边和对边的比)

正割:  (斜边与某个锐角的邻边的比值)

余割:  (直角三角形某个锐角的斜边与对边的比)

其他三角函数:

正矢: 

余矢:  

半正矢:  

外正割:  

外余割: 

毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。

而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以"tangent" (正切)及"secant"(正割)表示相应之概念 ,其后他分别以符号"sin.","tan."," sec.","sin. com","tan. com"," sec. com"表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。后来的 符号多有变化,下列的表便显示了它们之发展变化。

使用者 年代 正弦 余弦 正切 余切 正割 余割 备注

罗格蒙格努斯 1622 S.R. T. (Tang) T. cpl Sec Sec. Compl

吉拉尔 1626 tan sec.

杰克 1696 s. cos. t. cot. sec. cosec.

欧拉 1753 sin. cos. tag(tg). cot. sec. cosec

谢格内 1767 sin. cos. tan. cot. Ⅰ

巴洛 1814 sin cos. tan. cot. sec cosec Ⅰ

施泰纳 1827 tg Ⅱ

皮尔斯 1861 sin cos. tan. cotall sec cosec

奥莱沃尔 1881 sin cos tan cot sec csc Ⅰ

申弗利斯 1886 tg ctg Ⅱ

万特沃斯 17 sin cos tan cot sec csc Ⅰ

舍费尔斯 1921 sin cos tg ctg sec csc Ⅱ

注:Ⅰ-现代(欧洲)*派三角函数符号。

Ⅱ-现代英美派三角函数符号

我国早期(1980年代以前)采用Ⅱ类三角函数符号,目前(1990年代以后)采用Ⅰ类三角函数符号。

1729年,丹尼尔.伯努利是先以符号表示反 三角函数,如以AS表示反正弦。1736年欧拉以At 表示反正切,一年后又以Asinb/c表示 于单位圆上正弦值相等于b/c的弧。

1772年,C.申费尔以arc. tang. 表示反 正切;同年,拉格朗日采以arc. sin 1/1+α表示反正弦函数。1776年,兰伯特则以arc. sin表示 同样意思。1794年,鲍利以Arc.sin表示反正弦函数。其后这些记法逐渐得到普及,去掉符号中之小 点,便成现今通用之符号,如arc sin x,arc cos x 等。于三角函数前加arc表示反三角函数,而有时则 改以于三角函数前加大写字母开头Arc,以表示反三角函数之主值。

另一较常用之反三角函数符号如sin-1x ,tan-1x等,是赫谢尔于1813年开 始采用的,把反三角函数符号与反函数符号统一起来,至今亦有应用。 〔若对各三角函数的符号演变史感兴趣,可参梁 宗巨(1995),《数学历史典故》,页100-108,台北:九章出版社。〕

热心网友 时间:2022-06-17 07:08

三角函数符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。
而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent” (正切)及“secant”(正割)表示相应之概念 ,其后他分别以符号“sin.”,“tan.”,“ sec.”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com