发布网友 发布时间:2022-04-22 07:56
共2个回答
热心网友 时间:2022-04-14 19:53
人人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
更多人工智能和机器学习在数据挖掘应用的分析,推荐咨询CDA数据分析师的课程。CDA课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
热心网友 时间:2022-04-14 21:11
数据挖掘利用了人工智能(Al)和统计分析的进步带来了许多好处。这两门学科都致力于模式发现和预测。
一些新兴的技术同样在知识发现领域取得了很好的效果,如神经元网络和决策树,在足够多的数据和计算能力下,它们几乎不用人的关照自动就能完成许多有价值功能。
数据挖掘就是利用了统计和人工智能技术的算法及技术,把这些高深复杂的技术封装起来,使人们不用自已掌握这些技术也能完成同样的功能.并且更专注于自己所要解决的问题。
数据挖掘与这两者之间的主要区别在于算法对大数据量的适应性,数据挖掘的算法必须面对记录为数10万条记录以上的数据集有很好的性能;周期性数据集更新数据挖掘需要考虑能对这些增量数据处理而不用从头计算一次:数据挖掘还需考虑如何处理数据集大于内存的问题及并行处理问题:另外,数据挖掘面向解决工程问题。