发布网友 发布时间:2022-04-23 08:55
共5个回答
热心网友 时间:2022-06-18 16:49
数显冷冻干燥机由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。与传统干燥方式不同,数显冷冻干燥机的过程可以分为四个阶段:预处理~冷冻阶段~初级干燥~二次干燥。
1.预处理:包括在冷冻之前处理产品的任何方法,例如浓缩产品,配方修订,降低高蒸气压溶剂或增加表面积。食品块通常经过IQF处理,使其在数显冷冻干燥机前自由流动。在许多情况下,预处理产品的方法是基于数显冷冻干燥机的理论知识及其要求而定,目的是减少干燥时间或提升产品质量。
2.冷冻阶段:材料被冷却到其三相点以下,这确保了在以下步骤中将发生升华而不是熔化。大冰晶在产品内形成网络,促进升华过程中水蒸气的快速去除,形成大冰晶有利于更快、更有效的数显冷冻干燥机,为了形成更大的冰晶,产品应该缓慢冷冻。冷冻阶段在整个数显冷冻干燥机过程中是关键的,因为冷冻方法可以影响数显冷冻干燥机循环的持续时间和产品稳定性。
结构敏感货物在需要保存结构的情况下,如食物或具有以前活细胞的物体,大的冰晶将破坏细胞壁,这可能导致越来越差的质地和营养成分的损失。在这种情况下,快速完成冷冻,以便将材料快速降低到其共晶点以下,从而避免形成大的冰晶。通常,冷冻温度在-50°C至-80°C之间。
3.初级干燥:本阶段期间压力降低,并且向材料供应足够的热量以使冰升华,可以使用升华分子的升华潜热来计算所需的热量。在该初始干燥阶段,材料中约95%的水升华。这个阶段可能很慢,因为如果加入太多的热量,材料的结构可能会改变。在该阶段,通过施加部分真空来控制压力,真空加速了升华,使其成为一种有意识的干燥过程。
需要注意的是,在这个压力范围内,热量主要来自传导或辐射,由于空气密度低,对流效应可以忽略不计。
4.二次干燥:初级干燥阶段除去了冰,而本阶段旨在去除未冻结的水分子,这一阶段干燥时间取决于材料的吸附等温线。在该阶段,温度升高至高于初级干燥阶段,甚至可以高于0℃,以破坏水分子与冷冻材料之间形成的任何物理-化学相互作用。通常在该阶段降低压力以促进解吸,然而有些产品也受益于增加的压力。
在数显冷冻干燥机过程完成后,在密封材料之前,通常用惰性气体如氮气破坏真空。在操作结束时,产品中的终残留水含量极低,约为1%~4%。
热心网友 时间:2022-06-18 16:49
真空冷冻干燥的前处理
对于不同的待干物料,前处理的方法是不同的。有的工序比较复杂,有的工序则相对比较简单。但是通常为了获得安全卫生的产品,对冷冻干燥设备进行消毒是必不可少的工序。常用的消毒方法有:
(1)气体杀菌消毒法该消毒法是利用气态的或汽化的化学物质来处理设备或材料,常用消毒剂有:环氧乙烷、甲醛、环氧丙烷、溴代甲烷及ß丙醇酸内脂。
(2)加热杀菌法干加热:利用氧化方法杀死细菌,实际上大部分是焚化了;直接蒸汽加热:采用专门的低压蒸汽消毒蒸锅,要求蒸汽温度保持在120℃左右,持续时间至少30分钟。为了防止蒸汽加热不到死角现象的出现,在通入蒸汽前应将整个系统抽真空至100Pa。用70%的酒精在箱内喷雾,经过24小时后用消毒布擦干;负压蒸汽加热杀菌剂:将冻干箱和整个系统抽真空至10Pa以下,通入70~90℃的蒸汽加*溶剂,使容器保持在热状态下2小时。
(3)辐射杀菌法紫外线辐射:采用低压汞放电灯作为辐射源,产生波长为2.537×l0-3m的紫外线进行辐射杀菌,这些紫外线对人体的皮肤、眼睛是有损害的,使用时要特别注意防护;X射线:高压下产生的X射线具有很强的渗透力,可用来消毒食品和药品,它对各种微生物都具有杀伤作用,但若要杀死全部细菌则需要相当长的辐射时间;阴极射线:阴极射线具有快速杀菌作用。
二、真空冷冻干燥的预冻
预冻就是将物料中的自由水固化,从而确保干燥后的产品与干燥前有相同的形态,防止真空干燥时起泡、抽缩、浓缩和溶质移动等不可逆变化的发生,减少因真空干燥后温度下降引起物质的可溶性降低和物质生命特性的变化。预冻对冻干产品的质量起着至关重要的作用,因此必须满足以下两项基本要求:适当的降温速率。降温速率过快,细胞外溶液开始结冰时,细胞内部的水分来不及通过细胞膜渗透到细胞外面,从而使细胞内部溶液过冷,形成胞内冰;降温速率过慢,使细胞过度脱水,严重皱缩,细胞在不太低的温度下,在高浓度的溶液中经历的时间过长,从而导致细胞损伤,甚至死亡。降温速率取决于冷源的温度、样品数量、容器体积和表面积、样品容器和冷环境之间的传热等。人们经过多年的探索,发现针对不同的细胞和不同的保护剂,存在着各不相同的zui佳冷。
三、干燥
物料的干燥阶段一般分为两个阶段,升华干燥阶段和解析干燥阶段。
(1)升华干燥阶段
升华干燥阶段也称*阶段干燥,将冻结后的产品臵于密闭的真空容器中加热,使冰晶升华成水蒸汽逸出,从而使产品脱水干燥。干燥是由外表面逐步向内推移的,冰晶升华后残留下的空隙就变成尔后升华水蒸汽的逸出通道。已干层和冻结部分的分界面称为升华界面。当全部冰晶除去时,*阶段的干燥就完成了,此时约除去全部水分的90%左右。但在干燥过程中,应该始终保持物料中的未干燥部分为冻结状态。若温度过高则会引起冰晶融化,所以应使物料的冻结层温度低于其共晶点温度。另外,也不能加热过快使已干层温度超过其崩解温度,所谓崩解温度就是某些已干的产品当温度达到某一数值时会失去刚性发生类似崩溃的现象,失去疏松多孔的性质而使干制品发粘、比重增加、颜色加深等。干制品发生崩解以后影响冻干层中出来的水蒸汽的通过,导致产部分融化。为了提高冻干层的导热系数,干燥室内压力越高越好,但干燥室内压力过高又会使水蒸汽很难从升华界面逸出,造成升华界面温度过高,冻结层融化和干燥层崩解。综合考虑,一般将干燥室内压力控制在13~150Pa之间。
(2)解吸干燥阶段
解吸干燥阶段也称为第二阶段干燥。在*阶段干燥结束之后,在干燥物料的毛细管壁和极性基团上还吸附有一部分水,这些水是未被冻结的。当它们达到一定含量,就为微生物的生长繁殖和某些化学反应提供了条件。实验证明,即使是分子层以下的低含水量,也可以成为某些化合物的溶液,产生与水溶液相同的推移性和反应性。因此,为了改善产品的贮存稳定性,延长其保存期,需要除去这些水分。
四、后处理
冻干后的产品不仅含水量低,而且疏松多孔,因而吸湿性强,再加上物料表面积相对增大,易受氧化影响,为便于保存,后处理不容忽视。后处理容为封装和储藏。产品不同,包装方法也不同。对于生物制品,冻干结束后要向箱内充入无菌的干燥空气,然后在无菌室内将容器封口,或在冻干结束后在冻干箱内真空加塞或包装。
热心网友 时间:2022-06-18 16:50
冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程. 冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。物质在干燥前始终处于低温(冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。在最大程度上防止干燥物质的理化和生物学方面的变性。
冷冻干燥基本过程:
将金属盐溶液或粉体的分散浆喷到低温有机液体里,由于快速热交换作用使溶液滴瞬时冷冻成冰盐共存的小固体颗粒,然后在低温低压下使固粒中的溶剂升华、脱水,最后得到粉末。
冻干工艺包括预冻、升华和冻干三个分阶段:
预冷冻:
溶液速冻时(每分钟降温10~50℃),晶粒保持在显微镜下可见的大小;相反慢冻时(1℃/分),形成的结晶肉眼可见。粗晶在升华留下较大的空隙,可以提高冻干的效率,细晶在升华后留下的间隙较小,使下层升华受阻,速成冻的成品粒子细腻,外观均匀,比表面积大,多孔结构好,溶解速度快,便成品的引湿性相对也要强些。
升华和冻干过程:
冰在一定温度下的饱和蒸汽压大于环境的水蒸气分压时即可开始升华;比制品温更低的凝结器对水蒸气的抽吸与捕获作用,则是维护升华所必需的条件。气体分子在两次连续碰撞之间所走的距离称为平均自由程,它与压力成反比。
在常压下,其值很小,升华的水分子很容易与气体碰撞又返回到蒸汽源表面,因而升华速度很慢。随着压力降低到13.3Pa以下,平均自由程增大105倍,使升华速度显著加快,飞离出来的水分子很少改变自己的方向,从而形成了定向的蒸汽流。
在升华的第一阶段(大量升华阶段),制品温度要低于其共晶点一个范围。因此搁板温要加以控制,若制品已经部分干燥,但温度却超过了其共晶点,此时将发生制品融化现象,而此时融化的液体,对冰饱和,对溶质却未饱和,因而干燥的溶质将迅速溶解进去,最后浓缩成一薄僵块,外观极为不良,溶解速度很差。故在升华阶段必须避免出现温度高过共晶点的情况。
在大量升华过程,虽然搁板和制品温度有很大悬殊,但由于板温、凝结器温度和真空温度基本不变,因而升华吸热比较稳定,制品温度相对恒定。随着制品自上而下层层干燥,冰层升华的阻力逐渐增大。制品温度相应也会小幅上升。升华过程要持续到用肉眼已不到冰晶的存在。此时90%以上的水分已除去,大量升华的过程至此已基本结束。为了确保整箱制品大量升华完毕,板温仍需保持一个阶段后再进行第二阶段的升温。
一旦产品内冰升华完毕,产品的干燥便进入了第二阶段。在该阶段虽然产品内不存在冻结冰,但产品内还存在10%左右的水份,为了使产品达到合格的残余水份含量,必须对产品进一步的干燥。 在解吸阶段,可以使产品的温度迅速地上升到该产品的最高允许温度,并在该温度一直维持到冻干结束为止。迅速提高产品温度有利于降低产品残余水份含量和缩短解吸干燥的时间。
热心网友 时间:2022-06-18 16:50
又称升华干燥。将含水物料冷冻到冰点以下,使水转变为冰,然后在较高真空下将冰转变为蒸气而除去的干燥方法。物料可先在冷冻装置内冷冻,再进行干燥。但也可直接在干燥室内经迅速抽成真空而冷冻。升华生成的水蒸气借冷凝器除去。升华过程中所需的汽化热量,一般用热辐射供给。
中文名
冷冻干燥
别名
升华干燥
英文
freeze drying
特点
干燥后的物料保持原来性质等
快速
导航
原理
特点
技术优势
基础理论
生产工艺
食品
概述
冷冻干燥是利用冰晶升华的原理,在高度真空的环境下,将已冻结了的食品物料的水分不经过冰的融化直接从冰固体升华为蒸汽,一般真空干燥物料中的水分是在液态下转化为汽态而将食品干制,故冷冻干燥又称为冷冻升华干燥[1] 。
其主要优点是:(1)干燥后的物料保持原来的化学组成和物理性质(如多孔结构、胶体性质等);(2)热量消耗比其他干燥方法少。缺点是费用较高,不能广泛采用。用于干燥抗生素、蔬菜和水果等。
冷冻干燥设备
含水的生物样品,经过冷冻固定,在低温高真空的条件下使样品中的水分由冰直接升华达到干燥的目的,在干燥的过程中不受表面张力的作用,样品不变形。
真空冷冻干燥技术是将湿物料或溶液在较低的温度(-10℃~-50℃)下冻结成固态,然后在真空(1.3~13帕)下使其中的水分不经液态直接升华成气态,最终使物料脱水的干燥技术。中国是原料药生产大国,因此该技术应用前景十分广阔。但是,应当引起注意的是,真空冷冻干燥技术在我国推广得非常迅速,相比之下,其基础理论研究相对滞后、薄弱,专业技术人员也不多。并且,与气流干燥、喷雾干燥等其他干燥技术相比,真空冷冻干燥设备投资大,能源消耗及药品生产成本较高,从而*了该技术的进一步发展。因此,切实加强基础理论研究,在确保药品质量的同时,实现节能降耗、降低生产成本,已经成为真空冷冻干燥技术领域当前面临的最主要的问题。
原理
由物理学可知,水有三相,O点为三相共点,OA为冰的融解点。根据压力减小、沸点下降的原理,只要压力在三相点压力之下(图中压力为 6.5Pa以下,温度0℃以下),物料中的水分则可从水不经过液相而直接升华为水汽。根据这个原理,就可以先将食品的湿原料冻结至冰点之下,使原料中的水分变为固态冰,然后在适当的真空环境下,将冰直接转化为蒸汽而除去,再用真空系统中的水汽凝结器将水蒸汽冷凝,从而使物料得到干燥。这种利用真空冷冻获得干燥的方法,是水的物态变化和移动的过程,这个过程发生在低温低压下,因此,冷冻干燥的基本原理是在低温低压下传热传质的机理[2] 。
冷冻干燥不同于普通的加热干燥,物料中的水分基本上在0℃以下的冰冻的固体表面升华而进行干燥,物质本身则剩留在冻结时的冰架子中,因此,干燥后的产品体积不变、疏松多孔。冰在升华时需要热量,必须对物料进行适当加热,并使加热板与物料升华表面形成一定温度梯度,以利于传热的顺利进行。
制品的冷冻干燥过程包括冻结、升华和再干燥3个阶段。
冻结
先将欲冻干物料用适宜冷却设备冷却至2℃左右,然后置于冷至约一40℃(13.33Pa)冻干箱内。关闭干燥箱,迅速通入制冷剂(氟里昂、氨),使物料冷冻,并保捧攀邸h或更长时间,以克服溶液的过冷现象,使制品完全冻结,即可进行升华。
热心网友 时间:2022-06-18 16:51
冷冻干燥又称升华干燥,将物料冷冻至水的冰点以下,并置于高真空(10~40Pa)的容器中,通过供热使物料中的水分直接从固态冰升华为水汽的一种干燥方法。
由物理学可知,水有三相,O点为三相共点,OA为冰的融解点。根据压力减小、沸点下降的原理,只要压力在三相点压力之下(图中压力为 6.5Pa以下,温度0℃以下),物料中的水分则可从水不经过液相而直接升华为水汽。根据这个原理,就可以先将食品的湿原料冻结至冰点之下,使原料中的水分变为固态冰,然后在适当的真空环境下,将冰直接转化为蒸汽而除去,再用真空系统中的水汽凝结器将水蒸汽冷凝,从而使物料得到干燥。这种利用真空冷冻获得干燥的方法,是水的物态变化和移动的过程,这个过程发生在低温低压下,因此,冷冻干燥的基本原理是在低温低压下传热传质的机理。[2]
冷冻干燥不同于普通的加热干燥,物料中的水分基本上在0℃以下的冰冻的固体表面升华而进行干燥,物质本身则剩留在冻结时的冰架子中,因此,干燥后的产品体积不变、疏松多孔。冰在升华时需要热量,必须对物料进行适当加热,并使加热板与物料升华表面形成一定温度梯度,以利于传热的顺利进行。
制品的冷冻干燥过程包括冻结、升华和再干燥3个阶段。
折叠冻结
先将欲冻干物料用适宜冷却设备冷却至2℃左右,然后置于冷至约一40℃(13.33Pa)冻干箱内。关闭干燥箱,迅速通入制冷剂(氟里昂、氨),使物料冷冻,并保捧攀邸h或更长时间,以克服溶液的过冷现象,使制品完全冻结,即可进行升华。
折叠升华
制品的升华是在高度真空下进行的,在压力降低过程中,必须保持箱内物品的冰冻状态,以防溢出容器。待箱内压力降至一定程度后,再打开罗茨真空泵(或真空扩散泵),压力降到1.33Pa,一60。C以下时,冰即开始升华,升华的水蒸气在冷凝器内结成冰晶。为保证冰的升华,应开启加热系统,将搁板加热,不断供给冰升华所需的热量。
折叠再干燥
在升华阶段内,冰大量升华,此时制品的温度不宜超过最低共熔点,以防产品中产生僵块或产品外观上的缺损,在此阶段内搁板温度通常控制在±10℃之间。制品的再干燥阶段所除去的水分为结合水分,此时固体表面的水蒸气压呈不同程度的降低,干燥速度明显下降。在保证产品质量的前提下,在此阶段内应适当提高搁板温度,以利于水分的蒸发,一般是将搁板加热至30~35。C,实际操作应按制品的冻干曲线(事先经多次实验绘制的温度、时间、真空度曲线)进行,直至制品温度与搁板温度重合达到干燥为止。